Serveur d'exploration sur le peuplier

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Differential retention and expansion of the ancestral genes associated with the paleopolyploidies in modern rosid plants, as revealed by analysis of the extensins super-gene family.

Identifieur interne : 002285 ( Main/Exploration ); précédent : 002284; suivant : 002286

Differential retention and expansion of the ancestral genes associated with the paleopolyploidies in modern rosid plants, as revealed by analysis of the extensins super-gene family.

Auteurs : Lianhua Guo ; Yingnan Chen ; Ning Ye ; Xiaogang Dai ; Wanxu Yang ; Tongming Yin [République populaire de Chine]

Source :

RBID : pubmed:25047956

Descripteurs français

English descriptors

Abstract

BACKGROUND

All modern rosids originated from a common hexapolyploid ancestor, and the genomes of some rosids have undergone one or more cycles of paleopolyploidy. After the duplication of the ancient genome, wholesale gene loss and gene subfunctionalization has occurred. Using the extensin super-gene family as an example, we tracked the differential retention and expansion of ancestral extensin genes in four modern rosids, Arabidopsis, Populus, Vitis and Carica, using several analytical methods.

RESULTS

The majority of extensin genes in each of the modern rosids were found to originate from different ancestral genes. In Arabidopsis and Populus, almost half of the extensins were paralogous duplicates within the genome of each species. By contrast, no paralogous extensins were detected in Vitis and Carica, which have only undergone the common γ-triplication event. It was noteworthy that a group of extensins containing the IPR006706 domain had actively duplicated in Arabidopsis, giving rise to a neo-extensin around every 3 million years. However, such extensins were absent from, or rare in, the other three rosids. A detailed examination revealed that this group of extensins had proliferated significantly in the genomes of a number of species in the Brassicaceae. We propose that this group of extensins might play important roles in the biology and in the evolution of the Brassicaceae. Our analyses also revealed that nearly all of the paralogous and orthologous extensin-pairs have been under strong purifying selection, leading to the strong conservation of the function of extensins duplicated from the same ancestral gene.

CONCLUSIONS

Our analyses show that extensins originating from a common ancestor have been differentially retained and expanded among four modern rosids. Our findings suggest that, if Arabidopsis is used as the model plant, we can only learn a limited amount about the functions of a particular gene family. These results also provide an example of how it is essential to learn the origination of a gene when analyzing its function across different plant species.


DOI: 10.1186/1471-2164-15-612
PubMed: 25047956
PubMed Central: PMC4117974


Affiliations:


Links toward previous steps (curation, corpus...)


Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Differential retention and expansion of the ancestral genes associated with the paleopolyploidies in modern rosid plants, as revealed by analysis of the extensins super-gene family.</title>
<author>
<name sortKey="Guo, Lianhua" sort="Guo, Lianhua" uniqKey="Guo L" first="Lianhua" last="Guo">Lianhua Guo</name>
</author>
<author>
<name sortKey="Chen, Yingnan" sort="Chen, Yingnan" uniqKey="Chen Y" first="Yingnan" last="Chen">Yingnan Chen</name>
</author>
<author>
<name sortKey="Ye, Ning" sort="Ye, Ning" uniqKey="Ye N" first="Ning" last="Ye">Ning Ye</name>
</author>
<author>
<name sortKey="Dai, Xiaogang" sort="Dai, Xiaogang" uniqKey="Dai X" first="Xiaogang" last="Dai">Xiaogang Dai</name>
</author>
<author>
<name sortKey="Yang, Wanxu" sort="Yang, Wanxu" uniqKey="Yang W" first="Wanxu" last="Yang">Wanxu Yang</name>
</author>
<author>
<name sortKey="Yin, Tongming" sort="Yin, Tongming" uniqKey="Yin T" first="Tongming" last="Yin">Tongming Yin</name>
<affiliation wicri:level="1">
<nlm:affiliation>The Southern Modern Forestry Collaborative Innovation Center, Nanjing Forestry University, 159#, Longpan Road, Nanjing 210037, China. tmyin@njfu.com.cn.</nlm:affiliation>
<country xml:lang="fr">République populaire de Chine</country>
<wicri:regionArea>The Southern Modern Forestry Collaborative Innovation Center, Nanjing Forestry University, 159#, Longpan Road, Nanjing 210037</wicri:regionArea>
<wicri:noRegion>Nanjing 210037</wicri:noRegion>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2014">2014</date>
<idno type="RBID">pubmed:25047956</idno>
<idno type="pmid">25047956</idno>
<idno type="doi">10.1186/1471-2164-15-612</idno>
<idno type="pmc">PMC4117974</idno>
<idno type="wicri:Area/Main/Corpus">002083</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Corpus" wicri:corpus="PubMed">002083</idno>
<idno type="wicri:Area/Main/Curation">002083</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Curation">002083</idno>
<idno type="wicri:Area/Main/Exploration">002083</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Differential retention and expansion of the ancestral genes associated with the paleopolyploidies in modern rosid plants, as revealed by analysis of the extensins super-gene family.</title>
<author>
<name sortKey="Guo, Lianhua" sort="Guo, Lianhua" uniqKey="Guo L" first="Lianhua" last="Guo">Lianhua Guo</name>
</author>
<author>
<name sortKey="Chen, Yingnan" sort="Chen, Yingnan" uniqKey="Chen Y" first="Yingnan" last="Chen">Yingnan Chen</name>
</author>
<author>
<name sortKey="Ye, Ning" sort="Ye, Ning" uniqKey="Ye N" first="Ning" last="Ye">Ning Ye</name>
</author>
<author>
<name sortKey="Dai, Xiaogang" sort="Dai, Xiaogang" uniqKey="Dai X" first="Xiaogang" last="Dai">Xiaogang Dai</name>
</author>
<author>
<name sortKey="Yang, Wanxu" sort="Yang, Wanxu" uniqKey="Yang W" first="Wanxu" last="Yang">Wanxu Yang</name>
</author>
<author>
<name sortKey="Yin, Tongming" sort="Yin, Tongming" uniqKey="Yin T" first="Tongming" last="Yin">Tongming Yin</name>
<affiliation wicri:level="1">
<nlm:affiliation>The Southern Modern Forestry Collaborative Innovation Center, Nanjing Forestry University, 159#, Longpan Road, Nanjing 210037, China. tmyin@njfu.com.cn.</nlm:affiliation>
<country xml:lang="fr">République populaire de Chine</country>
<wicri:regionArea>The Southern Modern Forestry Collaborative Innovation Center, Nanjing Forestry University, 159#, Longpan Road, Nanjing 210037</wicri:regionArea>
<wicri:noRegion>Nanjing 210037</wicri:noRegion>
</affiliation>
</author>
</analytic>
<series>
<title level="j">BMC genomics</title>
<idno type="eISSN">1471-2164</idno>
<imprint>
<date when="2014" type="published">2014</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Arabidopsis (genetics)</term>
<term>Carica (genetics)</term>
<term>Databases, Genetic (MeSH)</term>
<term>Genes, Plant (MeSH)</term>
<term>Glycoproteins (classification)</term>
<term>Glycoproteins (genetics)</term>
<term>Glycoproteins (metabolism)</term>
<term>Phylogeny (MeSH)</term>
<term>Plant Proteins (classification)</term>
<term>Plant Proteins (genetics)</term>
<term>Plant Proteins (metabolism)</term>
<term>Polyploidy (MeSH)</term>
<term>Populus (genetics)</term>
<term>Vitis (genetics)</term>
</keywords>
<keywords scheme="KwdFr" xml:lang="fr">
<term>Arabidopsis (génétique)</term>
<term>Bases de données génétiques (MeSH)</term>
<term>Carica (génétique)</term>
<term>Glycoprotéines (classification)</term>
<term>Glycoprotéines (génétique)</term>
<term>Glycoprotéines (métabolisme)</term>
<term>Gènes de plante (MeSH)</term>
<term>Phylogenèse (MeSH)</term>
<term>Polyploïdie (MeSH)</term>
<term>Populus (génétique)</term>
<term>Protéines végétales (classification)</term>
<term>Protéines végétales (génétique)</term>
<term>Protéines végétales (métabolisme)</term>
<term>Vitis (génétique)</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="classification" xml:lang="en">
<term>Glycoproteins</term>
<term>Plant Proteins</term>
</keywords>
<keywords scheme="MESH" qualifier="classification" xml:lang="fr">
<term>Glycoprotéines</term>
<term>Protéines végétales</term>
</keywords>
<keywords scheme="MESH" qualifier="genetics" xml:lang="en">
<term>Arabidopsis</term>
<term>Carica</term>
<term>Glycoproteins</term>
<term>Plant Proteins</term>
<term>Populus</term>
<term>Vitis</term>
</keywords>
<keywords scheme="MESH" qualifier="génétique" xml:lang="fr">
<term>Arabidopsis</term>
<term>Carica</term>
<term>Glycoprotéines</term>
<term>Populus</term>
<term>Protéines végétales</term>
<term>Vitis</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="metabolism" xml:lang="en">
<term>Glycoproteins</term>
<term>Plant Proteins</term>
</keywords>
<keywords scheme="MESH" qualifier="métabolisme" xml:lang="fr">
<term>Glycoprotéines</term>
<term>Protéines végétales</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Databases, Genetic</term>
<term>Genes, Plant</term>
<term>Phylogeny</term>
<term>Polyploidy</term>
</keywords>
<keywords scheme="MESH" xml:lang="fr">
<term>Bases de données génétiques</term>
<term>Gènes de plante</term>
<term>Phylogenèse</term>
<term>Polyploïdie</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">
<p>
<b>BACKGROUND</b>
</p>
<p>All modern rosids originated from a common hexapolyploid ancestor, and the genomes of some rosids have undergone one or more cycles of paleopolyploidy. After the duplication of the ancient genome, wholesale gene loss and gene subfunctionalization has occurred. Using the extensin super-gene family as an example, we tracked the differential retention and expansion of ancestral extensin genes in four modern rosids, Arabidopsis, Populus, Vitis and Carica, using several analytical methods.</p>
</div>
<div type="abstract" xml:lang="en">
<p>
<b>RESULTS</b>
</p>
<p>The majority of extensin genes in each of the modern rosids were found to originate from different ancestral genes. In Arabidopsis and Populus, almost half of the extensins were paralogous duplicates within the genome of each species. By contrast, no paralogous extensins were detected in Vitis and Carica, which have only undergone the common γ-triplication event. It was noteworthy that a group of extensins containing the IPR006706 domain had actively duplicated in Arabidopsis, giving rise to a neo-extensin around every 3 million years. However, such extensins were absent from, or rare in, the other three rosids. A detailed examination revealed that this group of extensins had proliferated significantly in the genomes of a number of species in the Brassicaceae. We propose that this group of extensins might play important roles in the biology and in the evolution of the Brassicaceae. Our analyses also revealed that nearly all of the paralogous and orthologous extensin-pairs have been under strong purifying selection, leading to the strong conservation of the function of extensins duplicated from the same ancestral gene.</p>
</div>
<div type="abstract" xml:lang="en">
<p>
<b>CONCLUSIONS</b>
</p>
<p>Our analyses show that extensins originating from a common ancestor have been differentially retained and expanded among four modern rosids. Our findings suggest that, if Arabidopsis is used as the model plant, we can only learn a limited amount about the functions of a particular gene family. These results also provide an example of how it is essential to learn the origination of a gene when analyzing its function across different plant species.</p>
</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" Owner="NLM">
<PMID Version="1">25047956</PMID>
<DateCompleted>
<Year>2015</Year>
<Month>03</Month>
<Day>12</Day>
</DateCompleted>
<DateRevised>
<Year>2018</Year>
<Month>11</Month>
<Day>13</Day>
</DateRevised>
<Article PubModel="Electronic">
<Journal>
<ISSN IssnType="Electronic">1471-2164</ISSN>
<JournalIssue CitedMedium="Internet">
<Volume>15</Volume>
<PubDate>
<Year>2014</Year>
<Month>Jul</Month>
<Day>21</Day>
</PubDate>
</JournalIssue>
<Title>BMC genomics</Title>
<ISOAbbreviation>BMC Genomics</ISOAbbreviation>
</Journal>
<ArticleTitle>Differential retention and expansion of the ancestral genes associated with the paleopolyploidies in modern rosid plants, as revealed by analysis of the extensins super-gene family.</ArticleTitle>
<Pagination>
<MedlinePgn>612</MedlinePgn>
</Pagination>
<ELocationID EIdType="doi" ValidYN="Y">10.1186/1471-2164-15-612</ELocationID>
<Abstract>
<AbstractText Label="BACKGROUND" NlmCategory="BACKGROUND">All modern rosids originated from a common hexapolyploid ancestor, and the genomes of some rosids have undergone one or more cycles of paleopolyploidy. After the duplication of the ancient genome, wholesale gene loss and gene subfunctionalization has occurred. Using the extensin super-gene family as an example, we tracked the differential retention and expansion of ancestral extensin genes in four modern rosids, Arabidopsis, Populus, Vitis and Carica, using several analytical methods.</AbstractText>
<AbstractText Label="RESULTS" NlmCategory="RESULTS">The majority of extensin genes in each of the modern rosids were found to originate from different ancestral genes. In Arabidopsis and Populus, almost half of the extensins were paralogous duplicates within the genome of each species. By contrast, no paralogous extensins were detected in Vitis and Carica, which have only undergone the common γ-triplication event. It was noteworthy that a group of extensins containing the IPR006706 domain had actively duplicated in Arabidopsis, giving rise to a neo-extensin around every 3 million years. However, such extensins were absent from, or rare in, the other three rosids. A detailed examination revealed that this group of extensins had proliferated significantly in the genomes of a number of species in the Brassicaceae. We propose that this group of extensins might play important roles in the biology and in the evolution of the Brassicaceae. Our analyses also revealed that nearly all of the paralogous and orthologous extensin-pairs have been under strong purifying selection, leading to the strong conservation of the function of extensins duplicated from the same ancestral gene.</AbstractText>
<AbstractText Label="CONCLUSIONS" NlmCategory="CONCLUSIONS">Our analyses show that extensins originating from a common ancestor have been differentially retained and expanded among four modern rosids. Our findings suggest that, if Arabidopsis is used as the model plant, we can only learn a limited amount about the functions of a particular gene family. These results also provide an example of how it is essential to learn the origination of a gene when analyzing its function across different plant species.</AbstractText>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Guo</LastName>
<ForeName>Lianhua</ForeName>
<Initials>L</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Chen</LastName>
<ForeName>Yingnan</ForeName>
<Initials>Y</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Ye</LastName>
<ForeName>Ning</ForeName>
<Initials>N</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Dai</LastName>
<ForeName>Xiaogang</ForeName>
<Initials>X</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Yang</LastName>
<ForeName>Wanxu</ForeName>
<Initials>W</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Yin</LastName>
<ForeName>Tongming</ForeName>
<Initials>T</Initials>
<AffiliationInfo>
<Affiliation>The Southern Modern Forestry Collaborative Innovation Center, Nanjing Forestry University, 159#, Longpan Road, Nanjing 210037, China. tmyin@njfu.com.cn.</Affiliation>
</AffiliationInfo>
</Author>
</AuthorList>
<Language>eng</Language>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
<PublicationType UI="D013485">Research Support, Non-U.S. Gov't</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2014</Year>
<Month>07</Month>
<Day>21</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>England</Country>
<MedlineTA>BMC Genomics</MedlineTA>
<NlmUniqueID>100965258</NlmUniqueID>
<ISSNLinking>1471-2164</ISSNLinking>
</MedlineJournalInfo>
<ChemicalList>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D006023">Glycoproteins</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D010940">Plant Proteins</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="C005488">extensin protein, plant</NameOfSubstance>
</Chemical>
</ChemicalList>
<CitationSubset>IM</CitationSubset>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D017360" MajorTopicYN="N">Arabidopsis</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="Y">genetics</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D029441" MajorTopicYN="N">Carica</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="Y">genetics</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D030541" MajorTopicYN="N">Databases, Genetic</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D017343" MajorTopicYN="Y">Genes, Plant</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D006023" MajorTopicYN="N">Glycoproteins</DescriptorName>
<QualifierName UI="Q000145" MajorTopicYN="N">classification</QualifierName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D010802" MajorTopicYN="N">Phylogeny</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D010940" MajorTopicYN="N">Plant Proteins</DescriptorName>
<QualifierName UI="Q000145" MajorTopicYN="N">classification</QualifierName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D011123" MajorTopicYN="N">Polyploidy</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D032107" MajorTopicYN="N">Populus</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="Y">genetics</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D027843" MajorTopicYN="N">Vitis</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="Y">genetics</QualifierName>
</MeshHeading>
</MeshHeadingList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="received">
<Year>2014</Year>
<Month>01</Month>
<Day>21</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="accepted">
<Year>2014</Year>
<Month>07</Month>
<Day>07</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2014</Year>
<Month>7</Month>
<Day>23</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2014</Year>
<Month>7</Month>
<Day>23</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2015</Year>
<Month>3</Month>
<Day>13</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>epublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">25047956</ArticleId>
<ArticleId IdType="pii">1471-2164-15-612</ArticleId>
<ArticleId IdType="doi">10.1186/1471-2164-15-612</ArticleId>
<ArticleId IdType="pmc">PMC4117974</ArticleId>
</ArticleIdList>
<ReferenceList>
<Reference>
<Citation>Plant Physiol. 2010 Jun;153(2):485-513</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20395450</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 2007 Jul 19;448(7151):349-52</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17637669</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell. 1992 Sep;4(9):1041-51</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">1392607</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant J. 1994 Feb;5(2):157-72</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8148875</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genome Res. 2008 Dec;18(12):1944-54</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18832442</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genome Inform. 2005;16(1):22-33</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16362903</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Trends Ecol Evol. 2000 Dec 1;15(12):496-503</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11114436</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell. 2002 May;14(5):1161-72</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12034904</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Mol Evol. 2011 Oct;73(3-4):153-65</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21965041</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Exp Bot. 2006;57(3):537-45</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16397002</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell. 1993 Jan;5(1):9-23</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8439747</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Biol Evol. 2011 Oct;28(10):2731-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21546353</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2011 May;156(1):11-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21415277</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nucleic Acids Res. 2013 Jan;41(Database issue):D1152-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23180799</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Biol Evol. 2007 Aug;24(8):1586-91</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17483113</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genetics. 2004 Dec;168(4):2217-26</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15371349</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 2011 Jun 17;332(6036):1401-3</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21680836</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Planta. 1999 Apr;208(2):212-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10333585</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genome Res. 2003 Feb;13(2):137-44</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12566392</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS One. 2011;6(11):e27424</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22087313</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nucleic Acids Res. 1997 Dec 15;25(24):4876-82</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9396791</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Trends Genet. 2006 Nov;22(11):597-602</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16979781</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Biol Evol. 2000 Oct;17(10):1483-98</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11018155</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Hered. 2001 Jul-Aug;92(4):371-3</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11535656</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell. 2004 Jul;16(7):1667-78</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15208399</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Exp Bot. 2008;59(14):4045-58</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18931351</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Bioinformatics. 2014 May 1;30(9):1312-3</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24451623</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2008 Nov;148(3):1189-200</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18775973</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 2006 Sep 15;313(5793):1596-604</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16973872</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2008 Feb 12;105(6):2226-31</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18256186</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genetica. 2011 Aug;139(8):1023-32</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21879323</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Brief Bioinform. 2008 Jul;9(4):286-98</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18372315</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Plant Pathol. 2006 Nov;7(6):579-92</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20507471</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nucleic Acids Res. 2007 Jan;35(Database issue):D224-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17202162</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 2008 Apr 25;320(5875):486-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18436778</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 2007 Oct 11;449(7163):677-81</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17928853</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell. 1995 Dec;7(12):2211-2225</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12242372</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Bioinformatics. 2009 Sep 1;25(17):2286-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19535536</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 1987 May;84(1):1-2</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16665379</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genetics. 2004 Nov;168(3):1575-84</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15579708</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 2003 Mar 27;422(6930):433-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12660784</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nucleic Acids Res. 1997 Sep 1;25(17):3389-402</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9254694</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 2007 Sep 27;449(7161):463-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17721507</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
<affiliations>
<list>
<country>
<li>République populaire de Chine</li>
</country>
</list>
<tree>
<noCountry>
<name sortKey="Chen, Yingnan" sort="Chen, Yingnan" uniqKey="Chen Y" first="Yingnan" last="Chen">Yingnan Chen</name>
<name sortKey="Dai, Xiaogang" sort="Dai, Xiaogang" uniqKey="Dai X" first="Xiaogang" last="Dai">Xiaogang Dai</name>
<name sortKey="Guo, Lianhua" sort="Guo, Lianhua" uniqKey="Guo L" first="Lianhua" last="Guo">Lianhua Guo</name>
<name sortKey="Yang, Wanxu" sort="Yang, Wanxu" uniqKey="Yang W" first="Wanxu" last="Yang">Wanxu Yang</name>
<name sortKey="Ye, Ning" sort="Ye, Ning" uniqKey="Ye N" first="Ning" last="Ye">Ning Ye</name>
</noCountry>
<country name="République populaire de Chine">
<noRegion>
<name sortKey="Yin, Tongming" sort="Yin, Tongming" uniqKey="Yin T" first="Tongming" last="Yin">Tongming Yin</name>
</noRegion>
</country>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Bois/explor/PoplarV1/Data/Main/Exploration
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 002285 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd -nk 002285 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Bois
   |area=    PoplarV1
   |flux=    Main
   |étape=   Exploration
   |type=    RBID
   |clé=     pubmed:25047956
   |texte=   Differential retention and expansion of the ancestral genes associated with the paleopolyploidies in modern rosid plants, as revealed by analysis of the extensins super-gene family.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Main/Exploration/RBID.i   -Sk "pubmed:25047956" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd   \
       | NlmPubMed2Wicri -a PoplarV1 

Wicri

This area was generated with Dilib version V0.6.37.
Data generation: Wed Nov 18 12:07:19 2020. Site generation: Wed Nov 18 12:16:31 2020